Электроэнергия производится на тэс. Технологический процесс производства электроэнергии на электростанциях

Производство электроэнергии

Производство электроэнергии

Большую часть электроэнергии, производимой в мире, вырабатывают тепловые электростанции (ТЭС), и мы как раз прибыли на одну из них. Обратите внимание на огромные резервуары цилиндрической формы. В этих впечатляющих «сосудах», объем которых может достигать 14 000 м³, хранится - тяжелая фракция нефти, служащая одним из видов топлива в энергетической промышленности.

Из нефти сегодня вырабатывают около 7% мировой электроэнергии. Это существенная доля, если учесть высокую стоимость нефтяного топлива. Его целесообразно использовать в районах, куда природный газ и каменный уголь доставить сложнее. В нашей стране на мазуте в основном работают электростанции, расположенные на Севере и на Дальнем Востоке. Кроме того, часто применяют в качестве резервного топлива на ТЭС, использующих газ как основное . В России доля таких электростанций составляет 35%.

Принцип работы ТЭС основан на преобразовании тепловой энергии в механическую, а затем - в электрическую. В топке котельного агрегата сжигают , чтобы привести в движение первичный двигатель, который, в свою очередь, заведет электрогенератор. Так, в самых распространенных в мире паротурбинных ТЭС, сжигая , получают водяной пар высокого давления. Он приводит в движение паровой турбины, соединенный с ротором электрического генератора.

Надо сказать, что мазут - не единственный нефтепродукт, который используют для получения электроэнергии. Для привода электрогенераторов можно применять бензиновые или дизельные двигатели внутреннего сгорания. Их малая мощность и низкий КПД компенсируются компактным размером станции и низкими расходами на установку и обслуживание. Более того, такие электростанции бывают передвижными - и если нужно обеспечить энергией геологическую экспедицию или оказать помощь в месте бедствия, они становятся настоящим спасением.

Что же до мазута, то его использование в качестве топлива для электростанций постепенно сокращается. Это во многом связано с модернизацией нефтеперерабатывающих заводов, где планируют увеличить выработку легких нефтепродуктов, соответственно, уменьшая выход тяжелых. В будущем будет активнее использоваться в качестве ценнейшего сырья для химической промышленности. А электроэнергетическая отрасль сделает ставку на альтернативные источники энергии.

Пожалуй, активнее всего сейчас развивают использование ветрогенераторов. Пока они дают менее 1% от потребляемой в мире энергии, но ситуация быстро меняется. Так, в Испании доля «ветроэнергии» уже достигла 40%, а британское правительство планирует к 2020 году перевести на нее все домохозяйства страны. Относительная дешевизна, доступность и экологическая чистота - несомненные плюсы этого направления. Но есть и недостатки: сильный шум, неровный выход энергии, необходимость в больших площадях для того, чтобы огромные лопасти современных мельниц не мешали друг другу. И, конечно же, необходимы постоянные ветра, а значит, технология подходит далеко не для всех территорий.

Впрочем, то же можно сказать и про гелиостанции. Солнечные батареи становятся частью повседневной жизни именно в южных странах, где в году много ясных дней. Теперь это не только источник электроэнергии для космических кораблей, но и свет и тепло для жителей домов, на крышах которых установлены панели фотоэлементов. В Москве солнечные батареи можно увидеть на крыше высотного здания Академии наук. Несомненно, у этой технологии большое будущее, ведь звезда по имени Солнце поставляет Земле примерно в 100 тысяч больше энергии, чем нашей цивилизации необходимо на сегодняшний день.

Геотермальные электростанции используют тепловую энергию, выделяемую земной корой в вулканических зонах - например, в Исландии, на Камчатке, в Новой Зеландии. Такие объекты достаточно дороги, зато их эксплуатация весьма экономична. В Исландии уже сейчас используют этот энергоресурс для отопления около 90% домов.

В приморских зонах можно строить приливные электростанции, использующие колебания уровня воды. Залив или устье реки перегораживают специальной плотиной, задерживающей воду при отливе. Когда воду выпускают, она вращает турбину. Еще более удивительный метод добычи энергии - использование разницы температур океанской воды. Теплая вода нагревает легко испаряющуюся жидкость (аммиак), пары приводят в движение турбину, а затем их конденсируют при помощи холодной воды. Такая электростанция работает, в частности, на Гавайях.

По оптимистичным прогнозам, во второй половине нашего столетия доля возобновляемых и альтернативных источников в мировой энергетике может достигнуть 50%.

Чтобы узнать больше о нефтяном топливе и о новых методах получения энергии, можно отправиться на АЗС.

Интересные факты

В наши дни, когда львиная доля электроэнергии вырабатывается за счет невозобновляемых ресурсов, в том числе из драгоценной нефти, наш долг - соблюдать элементарные правила экономии. Они ничуть не сложнее традиционного «Уходя, гасите свет». Несколько фактов для тех, кто хочет прямо сейчас стать более сознательным и бережливым жителем Земли:

  • Энергосберегающая лампочка потребляет две третьих от количества энергии, необходимого для обычной лампочки, а служит на 70% дольше.
  • Эффективность отопительных приборов и кондиционеров падает на 20% из-за банальных щелей в оконных рамах.
  • Если зарядное устройство для мобильного телефона постоянно подключено к сети, 95% энергии тратится впустую.
  • Неправильно выбранная программа стирки приводит к 30% перерасхода энергии.
  • Современные электроприборы маркируются в соответствии с классом энергоэффективности. Самые экономичные - приборы класса «А».

Краткий электронный справочник по основным нефтегазовым терминам с системой перекрестных ссылок. - М.: Российский государственный университет нефти и газа им. И. М. Губкина . М.А. Мохов, Л.В. Игревский, Е.С. Новик . 2004 .

Смотреть что такое "Производство электроэнергии" в других словарях:

    производство электроэнергии - — EN electrical industry Industry for the production of electric energy. (Source: CED) Тематики охрана окружающей среды EN …

    производство электроэнергии фотоэлектрическими установками - производство электроэнергии фотогальваническими установками — [Я.Н.Лугинский, М.С.Фези Жилинская, Ю.С.Кабиров. Англо русский словарь по электротехнике и электроэнергетике, Москва, 1999 г.] Тематики электротехника, основные понятия Синонимы… … Справочник технического переводчика

    производство электроэнергии из энергии Солнца - — [Я.Н.Лугинский, М.С.Фези Жилинская, Ю.С.Кабиров. Англо русский словарь по электротехнике и электроэнергетике, Москва, 1999 г.] Тематики электротехника, основные понятия EN solar electric generationsolar power generation … Справочник технического переводчика

    распределенное производство электроэнергии - включает в себя небольшие электростанции, расположенные в распределительной сети электроэнергетического предприятия с целью покрытия местной или региональной пиковой нагрузки (на уровне подстанции) или для того, чтобы отказаться от модернизации… … Справочник технического переводчика

    внутризаводское производство электроэнергии - (для собственных нужд) [А.С.Гольдберг. Англо русский энергетический словарь. 2006 г.] Тематики энергетика в целом EN in house generation … Справочник технического переводчика

    комбинированное производство электроэнергии и тепла - — [В.А.Семенов. Англо русский словарь по релейной защите] Тематики релейная защита EN cogeneration … Справочник технического переводчика

    комбинированное производство электроэнергии с использованием сухого льда - (для улавливания диоксида углерода) [А.С.Гольдберг. Англо русский энергетический словарь. 2006 г.] Тематики энергетика в целом EN dry ice cogeneration … Справочник технического переводчика

    крупномасштабное производство электроэнергии в комбинированном цикле (на тепловом потреблении) - (более 10 МВт) [А.С.Гольдберг. Англо русский энергетический словарь. 2006 г.] Тематики энергетика в целом EN СНР sector electricity large scale generation … Справочник технического переводчика

    маломасштабное производство электроэнергии в комбинированном цикле (на тепловом потреблении) - (менее 1 МВт) [А.С.Гольдберг. Англо русский энергетический словарь. 2006 г.] Тематики энергетика в целом EN СНР sector electricity small scale generation … Справочник технического переводчика

Рассмотрим движение проводника в плоскости, перпендикулярной направлению поля, когда один конец проводника неподвижен, а другой описывает окружность. Электродвижущая сила на концах проводника определяется формулой закона электромагнитной индукции. Машина, работающая...

Под производством энергии следует понимать преобразование энергии из «неудобной» для использования человеком формы в «удобную». К примеру, солнечный свет можно использовать, принимая непосредственно от Светила, а можно выработать из него , которая в свою очередь будет преобразована в свет внутри помещения. Можно сжигать газ в двигателе внутреннего сгорания, преобразуя в – вращение вала. А можно сжигать газ в топливном элементе, преобразуя ту же химическую энергию связей в электромагнитную энергию, которая затем будет преобразована в механическую энергию вращения вала. КПД различных алгоритмов преобразования энергии различается. Однако, это не следствие «ущербности» тех или иных энергетических цепочек. Причина различия КПД в разном уровне развития технологий. К примеру, КПД больших дизельных двигателей, устанавливаемых на океанских нефтеналивных танкерах и контейнеровозах существенно выше, чем КПД автомобильного дизеля. Однако с автомобильного двигателя снимают в разы больше лошадиных сил, и платить в итоге приходится снижением КПД.

Вообще, централизованная энергетика выглядит привлекательно лишь на первый взгляд

К примеру, ГЭС дают множество дармовой электроэнергии, но они очень дороги в постройке, оказывают разрушительное воздействие на экологию региона, вынуждают переносить поселки и строить города. А в засушливых странах последствия строительства ГЭС приводят к обезвоживанию целых регионов, где жителям не хватает воды даже для питья, а не то, что для сельского хозяйства. Атомные станции выглядят привлекательно, но производство , создает проблему утилизации и захоронения высокорадиоактивных отходов. Тепловые станции тоже не так плохи, ведь они составляют подавляющую часть производства и электричества. Но они выбрасывают в атмосферу углекислый газ и сокращают запасы полезных ископаемых. Но почему мы строим все эти станции, передаем, преобразуем и теряем огромные объемы энергии. Дело в том, что нам нужна конкретная энергия – электричество. Но ведь возможно построение таких производственных и жизненных процессов, когда не потребуется ни производить энергию в значительном удалении от потребителя, ни передавать ее на большие расстояния. Например, проблема получения водорода будет очень сложной, если начать производить его как топливо для автомобилей в мировых масштабах. Выделение водорода из воды электролизом – очень энергетически затратный процесс, который потребует удвоения мирового производства электроэнергии, в случае перевода всех авто на водород.

Но разве обязательно «сажать» водородное производство на старые мощности?

Ведь можно выделять водород из океанской воды на плавучих платформах, используя для этого энергию солнца. Тогда получится, что солнечная энергия надежно «консервируется» в водородном топливе и перевозится куда необходимо. Ведь это куда выгоднее, нежели передавать и хранить электроэнергию. Сегодня для производства энергии применяются следующие устройства и сооружения: печи, двигатели внутреннего сгорания, электрогенераторы, турбины, солнечные батареи , Ветровые установки и электростанции, дамбы и ГЭС, приливные станции, геотермальные станции, атомные станции, термоядерные реакторы.

К атегория: Электромонтажные работы

Производство электрической энергии

Электрическая энергия (электроэнергия) является наиболее совершенным видом энергии и используется во всех сферах и отраслях материального производства. К ее преимуществам относят - возможность передачи на большие расстояния и преобразование в другие виды энергии (механическую, тепловую, химическую, световую и др).

Электрическая энергия вырабатывается на специальных предприятиях - электрических станциях, преобразующих в электрическую другие виды энергии: химическую, топлива, энергию воды, ветра, солнца, атомную.

Возможность передачи электроэнергии на большие расстояния позволяет строить электростанции вблизи мест нахождения топлива или на многоводных реках, что является более экономичным, чем подвоз в больших количествах топлива к электростанциям, расположенным вблизи потребителей электроэнергии.

В зависимости от вида используемой энергии различают электростанции тепловые, гидравлические, атомные. Электростанции, использующие энергию ветра и теплоту солнечных лучей, представляют собой пока маломощные источники электроэнергии, не имеющие промышленного значения.

На тепловых электростанциях используется тепловая энергия, получаемая при сжигании в топках котлов твердого топлива (уголь, торф, горючие сланцы), жидкого (мазут) и газообразного (природный газ, а на металлургических заводах - доменный и коксовый газ).

Тепловая энергия превращается в механическую энергию вращением турбины, которая в генераторе, соединенном с турбиной, преобразуется в электрическую. Генератор становится источником электроэнергии. Тепловые электростанции различают по виду первичного двигателя: паровая турбина, паровая машина, двигатель внутреннего сгорания, локомобиль, газовая турбина. Кроме того, паротурбинные электростанции подразделяют на конденсационные и теплофикационные. Конденсационные станции снабжают потребителей только электрической энергией. Отработанный пар проходит цикл охлаждения и, превращаясь в конденсат, вновь подается в котел.

Снабжение потребителей тепловой и электрической энергией осуществляется теплофикационными станциями, называемыми теплоэлектроцентралями (ТЭЦ). На этих станциях тепловая энергия только частично преобразуется в электрическую, а в основном расходуется на снабжение промышленных предприятий и других потребителей, расположенных в непосредственной близости от электростанций, паром и горячей водой.

Гидроэлектростанции (ГЭС) сооружают на реках, являющихся неиссякаемым источником энергии для электростанций. Они текут с возвышенностей в низины и, следовательно, способны совершать механическую работу. На горных реках сооружают ГЭС, используя естественный напор воды. На равнинных реках напор создается искусственно сооружением плотин, вследствие разности уровней воды по обеим сторонам плотины. Первичными двигателями на ГЭС являются гидротурбины, в которых энергия потока воды преобразуется в механическую энергию.

Вода вращает рабочее колесо гидротурбины и генератор, при этом механическая энергия гидротурбины преобразуется в электрическую, вырабатываемую генератором. Сооружение ГЭС решает кроме задачи выработки электроэнергии также комплекс других задач народнохозяйственного значения - улучшение судоходства рек, орошение и обводнение засушливых земель, улучшение водоснабжения городов и промышленных предприятий.

Атомные электростанции (АЭС) относят к тепловым паротурбинным станциям, работающим не на органическом топливе, а использующим в качестве источника энергии теплоту, получаемую в процессе деления ядер атомов ядерного топлива (горючего), - урана или плутония. На АЭС роль котельных агрегатов выполняют атомные реакторы и парогенераторы.

Электроснабжение потребителей осуществляется преимущественно от электрических сетей, объединяющих ряд электростанций. Параллельная работа электрических станций на общую электрическую сеть обеспечивает рациональное распределение нагрузки между электростанциями, наиболее экономичную выработку электроэнергии, лучшее использование установленной мощности станций, повышение надежности электроснабжения потребителей и отпуска им электроэнергии с нормальными качественными показателями по частоте и напряжению.

Необходимость объединения вызвана неодинаковой нагрузкой электростанций. Спрос потребителей на электроэнергию резко изменяется не только в течение суток, но и в разные времена года. Зимой потребление электроэнергии на освещение возрастает. В сельском хозяйстве электроэнергия в больших количествах нужна летом на полевые работы и орошение.

Разница в степени загрузки станций особо ощутима при значительном отдалении районов потребления электроэнергии друг от друга в направлении с востока на запад, что объясняется разновременностью наступления часов утренних и вечерних максимумов нагрузки. Чтобы обеспечить надежность электроснабжения потребителей и полнее использовать мощность электростанций, работающих в разных режимах, их объединяют в энергетические или электрические системы с помощью электрических сетей высокого напряжения.

Совокупность электростанций, линий электропередачи и тепловых сетей, а также приемников электро- и тепло-энергии, связанных в одно целое общностью режима и непрерывностью процесса производства и потребления электрической и тепловой энергии, называют энергетической системой (энергосистемой). Электрическая система, состоящая из подстанций и линий электропередачи различных напряжений, - часть энергосистемы.

Энергосистемы отдельных районов в свою очередь соединены между собой для параллельной работы и образуют крупные системы, например единая энергетическая система (ЕЭС) европейской части СССР, объединенные системы Сибири, Казахстана, Средней Азии и др.

Теплоэлектроцентрали и заводские электростанции обычно связаны с электросетью ближайшей энергосистемы по линиям генераторного напряжения 6 и 10 кВ или линиям более высокого напряжения (35 кВ и выше) через трансформаторные подстанции. Передача энергии, выработанной мощными районными электростанциями, в электросеть для снабжения потребителей осуществляется по линиям высокого напряжения (110 кВ и выше).



- Производство электрической энергии

Выработка электричества распространенным способом происходит в результате преобразования механического усилия: вал генератора приводится в движение, что и создает электрический заряд. На электростанциях устанавливают генераторные установки, производительность которых зависит от параметров вращения и технической конструкции. Принципиально иной способ получения электрозаряда используется в солнечных панелях, которые поглощают световые лучи и преобразуют энергию солнца в напряжение.

Откуда берется электричество?

Электростанции подразделяются по источнику первичной энергии, которая участвует в производстве электроэнергии. Для этой цели человек приспособил природные силы и разработал технологии передачи энергетического потенциала горючих соединений в проводные коммуникации в виде электрического тока. На службу техническому прогрессу призваны: реки, ветер, океанские приливы и отливы, солнечный свет, а также — топливные, невозобновляемые ресурсы.

В крупных промышленных масштабах электричество получают на электростанциях следующих типов:

  • гидроэлектростанции (ГРЭС);
  • тепловые (ТЭС, в том числе, ТЭЦ — теплоэлектроцентрали);
  • атомные (АЭС или АТЭЦ).

Благодаря развитию технологий возрастает количество электростанций, использующих альтернативные источники энергии. К ним относятся приливные, ветровые, солнечные, геотермальные электрогенерирующие объекты. В отдельную категорию можно выделить комплексные автономные решения, состоящие из нескольких газотурбинных или дизельных генераторов, которые объедены для обеспечения высокой производительности.

Автономные электростанции

Генераторные комплексы автономного типа применяют для резервного электроснабжения, а также в ситуациях, когда прокладка высоковольтной ЛЭП затруднена природными условиями и оказывается нерентабельной. Необходимость установки мобильных электростанций возникает рядом с месторождениями полезных ископаемых, на производственных или строительных участках, значительно удаленных от проложенных электросетей.

Выработка электричества генераторными комплексами (производительность) зависит от количества генерирующих модулей, подключенных в единую цепь, и, по сути, ограничена только экономическими издержками. По сравнению с производством электроэнергии в крупных промышленных масштабах на АЭС, ТЭС, ГРЭС стоимость одного «дизельного» или «газотурбинного» мегавата обходится дороже. Поэтому при наличии подходящих условий инженеры-проектировщики и архитекторы производственных предприятий, населенных пунктов, жилых массивов ориентируются на подключение к подаче магистрального напряжения.

Производство электроэнергии в крупных масштабах

В двадцатом веке наибольший процент выработки электрической энергии приходился на ТЭС и ТЭЦ. С развитием атомной энергетики общемировая доля производства электроэнергии на АЭС превысила 10%. Строительство ГРЭС ограничено несколькими природными факторами, и поэтому гидроспособ преобразования используется локально, с привязкой к равнинным рекам. Полностью экологичное электричество или «зеленые мегаватты» — продукция объектов альтернативной выработки, — в 21-ом веке набирает популярность, что связано с заботой об окружающей среде и со стремлением рационально расходовать природные ресурсы.

ТЭС

Тепловые электростанции стали популярными по причине сравнительно небольших затрат для выхода на проектную мощность. Строительство ТЭС не связано с созданием плотин и монтажом ядерных реакторов. Для преобразования энергетического потенциала углеводородов в электроэнергию необходима технологическая система, состоящая из паровых котлов, паропровода и турбогенераторов. Масштабы и схемы могут быть разными, в том числе, в комбинации с теплоцентралью, но основной принцип работы ТЭС неизменен для всех случаев: тепло от сгорания через промежуточное парообразование преобразуется в электрическое напряжение.

ГРЭС

Гидроэлектростанции в отличие от тепловых не требуют топлива, удаления твердых отходов (угольные, торфяные, сланцевые ТЭС) и не загрязняют атмосферу продуктами сгорания. Но на широтах с холодными зимами и замерзающими водоемами производительность ГРЭС зависит от сезонных факторов. Затраты, вложенные в строительство плотин, окупаются продолжительное время, а уничтожение пахотных земель в результате затопления требует тщательной оценки того, насколько целесообразно возводить гидротехнические сооружения в определенном регионе.

АЭС

Атомные электростанции преобразуют энергию ядерного распада в электричество. Тепло от реактора поглощает теплоноситель первичного контура с нагревом через парогенератор воды во втором контурном цикле, откуда пар подается на генераторные турбины — и вращает их. Сложность процесса и опасность, связанная с аварийными ситуациями, ограничивают распространение данного виды выработки. Работа реактора должна контролироваться современными технологиями, а отработанное топливо — утилизироваться с соблюдением защитных мер.

Министерство образования и науки Российской Федерации

Федеральное агентство по образованию

ГОУ ВПО «Магнитогорский государственный технический

Университет им. Г.И. Носова

Кафедра теплотехнических

И энергетических систем

Методические указания

к лабораторной работе

«Изучение тепловой схемы теплоподготовительной установки ТЭЦ ОАО «ММК» и теплового пункта главного корпуса МГТУ»

по дисциплине «Источники и системы теплоснабжения предприятий»

для студентов специальности 140104 «Промышленная теплоэнергетика»

Магнитогорск

2009
Составители: ст. преп. С.В. Осколков, ст. преп. В.Ф. Толмачева, Шестаков М.С., Мухамедьяров Э.А

Изучение тепловой схемы теплоподготовительной установки ТЭЦ ОАО «ММК» и теплового пункта главного корпуса МГТУ: Методические указания к лабораторным работам по дисциплине «Котельные установки и парогенераторы» для студентов специальности 140104 «Промышленная теплоэнергетика». Магнитогорск: ГОУ ВПО МГТУ им. Г.И. Носова, 2009. 10 с.

Рецензент: доцент кафедры «Газоснабжение, вентиляция и городское хозяйство» МГТУ, к.т.н., Г.Н. Трубицына

Ó Осколков С.В., Толмачева В.Ф.,

Шестаков М.С., Мухамедьяров Э.А., 2009

Цель работы:

  1. Ознакомиться с технологическим процессом и тепловой схемой подготовки теплоносителей и основных тепловых сетей ТЭЦ ОАО «ММК».
  2. Ознакомиться с работой МТП Главного корпуса МГТУ и начертить тепловую схему с обозначением основного оборудования МТП.
  3. Изучить оперативные схемы бойлерных Правого (Левого) берега ТЭЦ ОАО «ММК».

Используемое оборудование

Стационарное оборудование – элеватор, водо-водяные теплообменники горячего водоснабжения, грязевики, теплопроводы, запорно-регулирующая арматура, манометры и термометры (оборудование МТП Главного корпуса МГТУ).

Общие сведения

Тепловая электростанция – это предприятие, продукцией которого является электроэнергия, а также теплота, отпускаемая в виде пара и горячей воды, а "сырьем" - органическое топливо (уголь, газ). Оборудование электростанции служит для экономичного преобразования химической энергии в электрическую.

Технологический процесс ТЭЦ.

Рассмотрим технологический процесс производства электроэнергии и тепла на ТЭЦ, работающей на угле (рисунок 1.).

Основными элементами рассматриваемой электростанции являются котельная установка, производящая пар высоких параметров; турбинная или паротурбинная установка, преобразующая теплоту пара в механическую энергию вращения ротора турбоагрегата, и электрические устройства (генератор, трансформаторы и т.д.), обеспечивающие выработку электроэнергии.

Основным элементом котельной установки является котёл. Прибывающий на ТЭЦ в специальных вагонах уголь раз­гружается, дробится до размера кусков 20-25 мм и ленточным транс­портёром подаётся в бункер 19, имеющий запас угля на несколько часов работы. Из бункера уголь поступает в мельницу 13, в которой он размалывается до пылевидного состояния. В мельницу непрерывно специальным дутьевым вентилятором 9 подаётся горячий воздух, нагреваемый в воздухоподогревателе 8. Горячий воздух "смешивается с угольной пылью и через горелки котла подаётся в его топку - камеру, в которой происходит горение топлива. .При горении пылевидного топлива образуется факел, представляющий собой мощный источник лучистой энергии, температура факела превышает 1500°С. Таким образом, при горении топлива его химическая энергия превращается в тепловую и лучистую энергию факела.

Стены топки облицованы экранами 20 - трубами, к которым подается питательная вода из экономайзера. На ТЭЦ установлены барабанные котлы, в экранах которых осуществляется многократная циркуляция питательной воды, а отделение пара от котловой воды происходит в барабане.

Сухой насыщенный пар поступает в пароперегреватель 6, в котором повышается его температура и, следовательно, потенциальная энергия.

Газообразные продукты сгорания топлива, отдав свою основную теплоту питательной воде, поступают на трубы экономайзера 7 и воздухоподогреватель 8, в которых они охлаждаются до температуры 140-160°С и направляются с помощью дымососа 11 к дымовой трубе 12. В электрофильтрах 10 происходит улавливание сухой летучей золы. Дымосос и дымовая труба создают разрежение в топке и газоходах котла; кроме того, дымовая труба рассеивает вредные продукты сгорания в верхних слоях атмосферы, не допуская их высокой концентрации в нижних слоях. Зола, образующаяся при горении топлива и не унесённая потоком газов, удаляется из донной части топки и транспортируется на золоотвалы.

Полученный на выходе из котельной установки пар высоких параметров поступает по паропроводу 4 к паровой турбине 3. Расширяясь в ней, пар вращает её ротор, соединенный с ротором электрического генератора 2, в обмотках которого образуется электрический ток. Трансформаторы 1 повышают его напряжение для уменьшения потерь в линиях электропередачи, передают часть выработанной энергии на питание собственных нужд ТЭЦ, а остальное - в электрическую систему.

И котёл, и турбина могут работать только при очень высоком качестве питательной воды и пара, допускающем ничтожные примеси других веществ. Кроме того, расходы пара огромны (например, в котлоагрегатах ТЭЦ за 1с испаряется примерно 0.5т воды). Поэтому номинальная работа энергоблока возможна только при создании замкнутого цикла циркуляции рабочего тела высокой чистоты. Пар, покидающий турбину 3, поступает в конденсатор 17 - теплообменник, по трубкам которого непрерывно протекает холодная вода, подаваемая циркуляционным насосом из реки Урал. Пар поступающий из турбины в промежуточное пространство конденсатора, конденсируется и стекает вниз. Образующийся конденсат конденсатным насосом 16 подаётся через регенеративный подогреватель 15 в деаэратор 5. В подогревателе 15 температура конденсата повышается за счёт теплоты пара, отбираемого из турбины. Это позволит уменьшить расход топлива в котле и повысить экономичность электростанции. В деаэраторе происходит деаэрация - удаление из конденсата растворённых в нём газов, нарушающих работу котла. Одновременно бак деаэратора представляет собой ёмкость для питательной воды котла.

Из деаэратора питательная вода питательным насосом 14, приводимым в действие электродвигателем, подаётся в котёл. Так образов замыкается технологический цикл преобразования химической энергии топлива в механичес­кую энергию вращения ротора турбоагрегата.

Снабжение потребителей теплотой осуществляется с помощью от­боров пара из турбины подобно тому, как это делается для регене­ративного подогрева питательной воды. Для целей теплофикации пар из так называемого отопительного отбора турбины направляется в сетевые подогреватели, в трубках которых циркулирует сетевая (отопительная) вода. Сетевые подогреватели установлены в турбинном участке ТЭЦ.

Рассмотренную схему ТЭЦ можно изобразить на тепловой схеме – графическое изображение отдельных элементов и трубопроводов с помощью условных обозначений.

ТЭЦ ОАО «ММК».

ТЭЦ ОАО “ММК” является крупной тепловой станцией, имеющая большое значение для стабильной независимой работы Магнитогорского Металлургического Комбината.

ТЭЦ покрывает около трети потребности комбината в электроэнергии, обеспечивает потребителей паром высоких и средних параметров и горячей водой. От эффективной работы ТЭЦ зависит успешная работа всех переделов ОАО “ММК”. ТЭЦ осуществляет теплоснабжение комбината и левобережной час­ти города, а также часть правого берега, район от ул. Гагарина до ул. Советской Армии. Кроме выработки электроэнергии ТЭЦ отпускает:

  • промышленную воду с насосных станций № 16, 16А для технологических нужд кислородно-компрессорного цеха;
  • химически очищенную воду с химводоотчистки (ХВО) ТЭЦ для нужд комбината.

Для того, чтобы управление технологическими процессами на ТЭЦ было наиболее эффективным энергетическое и вспомогательное оборудование распределено по участкам: топливно-транспортный участок, водно-химический, котельный, турбинный участок, участок тепловой автоматизации и измерений, электрический участок.

ТЭЦ ОАО"ММК" производит отпуск следующих видов энергоресурсов:

1) Электроэнергия. Через электросеть 110 кВ ТЭЦ имеет связь с другими электростанци­ями комбината и системой АО Челябэнерго.

2) Тепловая энергия. Отпуск тепловой энергии с ТЭЦ производится:

  • с горячей водой на теплофикацию города и комбината
  • с острый паром (Р=10МПа, t=500°С) на турбины компрес­соров ККЦ №4
  • с насыщенным паром от паропреобразовательной установки для технологических нужд комбината.

3) Химически очищенная вода. Отпускается на технологические нужды комбината и восполнения потерь сетевой воды.

4) Техническая вода. Отпускается цеху водоснабжения.

Установленная мощность ТЭЦ:

Электрическая 300 МВт

По отпуску тепла и горячей воды 886 МВт в т.ч. 327 МВт.

По отпуску пара от паропроизводительной установки 120т/ч.

Производительность химводоочистки 500т/ч

Производительность насосных станций 172000 т/ч.

Котельные агрегаты и турбогенераторы относятся к основному энергетическому обору­дованию. К вспомогательному оборудованию относятся: конденсатные, сливные, питательные, масляные и прочие насосы, бойлерные уста­новки, масляное хозяйство, регенеративные подогреватели, деаэра­торы и др.Технические характеристики котлоагрегатов и турбогенераторов приведены в таблицах 1 и 2 соответственно.

Таблица 1. Технические характеристики



Copyright © 2024 Бизнес. Оформление. Расчеты. Рентабельность. Увольнение.